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0. introduction

This paper deals with some aspects of the theory of C*-mappings which may be
profitably studied in the context of Synthetic Differential Geometry.

A special model that is particularly adapted to test our synthetic definitions and
statements is the topos B°P described by E. Dubuc (cf. [4], also [15], and [9]). The
category B is the category of C*®-rings of the form C*(R")/I, where [ is a local ideal.
This means that, for fe C*(R"), fe I if and only if the germ f Ix belongs to 7/ lx, the
ideal generated by the germs g lx of gel. The Grothendieck topology on B°P is
generated by the families of the form (C*(U)—C>(U)));c,, where J is open in R”
and {U,},c, is an open covering of U.

The starting point is the synthetic theory of jets given by A. Kock in [8], of which
we develop the analogue for germs (Section 1). This is based on a synthetic notion of
germ which is implicit in the work of J. Penon in [11]. A suggestion of A. Kock (in
[9], p. 285) then led us to a synthetic formulation and proof of ths Preimage
theorem (Section 2). In order to prove some density results, some version of Sard’s
theorem is needed. We give one that is true in B°®, and then use it to give a proof
that a certain c'ass of immersions is ‘dense’. We then study transversality from the
synthetic point of view, and establish, synthetically, two results: the Transversal
Preimage theorem and Thom’s transversality theorem (Section 4). An application of
the latter is the density of Morse functions (Section 5). The basic notion of stability
of smooth mappings is investigated in one of its forms, namely, infinitesimal
stability, as this is the most natural from the point of view of Synthetic Differential
Geometry (Section 5). Finally, we just hint at the advantages of studying unfoldings
of singularities from the synthetic point of view (Section 6).

We assume familiarity with A. Kock’s textbook and reference work [9].
Throughout the sections of this paper, assumptions about the ring object R in the
general topos ¢ in which we work, are made in the measure that they become
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42 M. Bunge

needed. These assumptions are intended to be cumulative, but nowhere in this paper
are they listed together. They are all valid in B,

1. Synthetic theory of germs

Let £ be a topos, and R a non-trivial commutative ring in & assumed to be of line
type (or to satisfy the Kock—Lawvere axiom) in the strong sense (cf. [9], p. 28).
Explicitly, for each n=1, k=1, denote by

Dim)y=ly=(y1,..., Yn)ER" Iany product of K+ 1 or more
of the yy,..., y,is O},

and for n=1, k=1, p=1, denote by g?*": RS—=R?*™ (where s=p- (")), the
map whose exponential adjoint R*xD,(n)—RP is given by the rule: ((ay), x)—
(T . .c0,X%), where 1 <a=<("}") and 1<i<p. With these notations, the axiom
may be stated:

For each n=1, k=1, p=1, the map %" is an isomorphism.

The infinitesimal subobjects D,(n)< R”, as well as their union D,(n)<R", play an
essential role in Kock’s synthetic theory of jets (cf. [8]). For xe R", a k-jet at x ‘of a
map from R" to RP’ is simply a map x+ Dy(n)—R” (not an equivalence class of
maps). Maps x + D,(n)— RP are said to be jets at x. Notice that, in general, xe R" is
a generalized eiement defined, e.g., at stage A, where A4 is an object of &. Then,
x+Dy(n)=[zeR" | z=x+y, for some ye D,(n)] makes sense as a subobject of R"
only in the topos < /A, where by abuse of notation we still denote by R” the image of
R" under the (logical) functor £ = #4/A4 given by X - X=(Xx A4 ﬁ»A).

In order to deal with germs in an analogous way, one resorts to the infinitesimal
neighborhoods of 0 considered by Penon [11]. These are given, for each n<1, by
the objects

Am= [[y=(y.,...,yn)e1z~|ﬂ—,(/_"\‘y,..-.o)]]

=--{0}<R"

For n=1, 4(n) is denoted by A. In the model B°P, 4 is represented by the germs at 0
of smooth real valued functions, i.e., by Cy(R) (cf. [11]). For xe R", let us say that
a map x+ A(n)—R”is a germ at x ‘of a map from R" to R?’. As before, if xe,R",
then the above is to be interpreted appropriately as a map in £/A4.

One immediately notices that

X+ 4(n)=--{x} (1.1)

and therefore, that the notion of germ that we have given is that which is contained
in Penon’s formulation (cf. [11]) of the Implicit Function theorem.
Let us assume next that R is a field object in the sense of Kock ([7], or [9] p. 267).
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This means that, in addition to being as non-trivial commutative ring in &, R
satisfies the axiom

where “x#0°’’ stands
LAl w v Ve ALMA D

Riwi'w

sense that:
Vx,yeR [(x+y)#0->(x#0)V(y#0)].

Also in view of the field axiom, the statements ‘‘-(x=0)"’ and ‘‘(x#0)’’ become
interchangeable.
We may now state some simple facts:

A(n)=A". (1.2)
This follows from the fact that == commutes with A.

44 BN AL\ S e DY L __ . O DA
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Use that R is a field.

(1.4) For any xeR", there is an isomorphism A(n)—x+ A(n), given by addition
with x.

The synthetic basis for relating germs and jets is the inclusion, for each n>=1,

D (n)cA(n). (1.5)
If y=(y1,...» Yn) € Dx(n), then for some k<1, y € Dy(n) hence A}_, (y¥*1=0). This
k+1

implies that Aj_,~(y;* #0) and so, that =\, (»;#0), hence " (A}., yi=0) so
that y e A(n).
Composition with (1.5) induces, for any p=1, a map denoted

j(;“ : RpA(") _’RPDW(")

which is said to assign, to a germ at 0,9 € R, its jet at 0. Similarly one defines j°
as well as j,f, for arbitrary xe R", k=1.

Composition with the inclusion D(n)<R" induces a map also denoted by jg .
The factorization of the above subobject through A4(7)<R" (given by (1.5)) is a
simple way to express the useful fact that the jet at a point of a map from R” to R”,
depends solely on the germ at the point of the map. Similar statements can be made
about jets and germs.

Closely related to the jet maps jé‘ are the following, which we will need in the
proof of Thom’s transversality theorem. For each he R”"" and k=0, define

J¥h: R"—»RPP

as follows: for xe R", let JX(x)=jEh, where h,e RP" is the image of h under the
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map
R7”: RP¥ +RPY

induced by composition with ¢, =x+(-): R"—=R". If xe, R", h, s to be interpreted
in #/A, as usual.

(1.6) Let xe R" and let x'e =~ {x}. If f: == {x}—=RP, then f(x") e ~~{f(x)}.

This holds on account of the monotonicity of ——.
An immediate consequence is the useful remark that:

(1.7 Every map -~ {x}—R” taking x to v, factors through ~~{ y} & RP”.

This has a number of consequences in the form of simplified definitions. Firstly,
since a germ is a map ~—{x}— -~ { y} for some x, y, composition of germs is easy
to define. Secondly, a germ ¢ : 7~ {x} == - {x} is an invertible germ if the map ¢ is
an isomorphism. Finally, to say that germs ¢: - {x}—=>~--{y}and ¢': 7" {x'} >
- = { v’} are equivalent germs, all we have to say is that there exist invertible germs
a:--{x}—=--{x} and B: -~ {y}—=--{y’} such that ¢’'=Bo¢poa!. Write
@~ @’ in this case. These definitions are to be interpreted in an internal sense.

Restriction to ~~{x} —R" for xe R" induces for each p=1 a map denoted

.
Rp"' ‘,Rp {x}

and is said to assign, to a map fe R?Y its germ f IX at x.

In [8], the notion of manifold introduced is that of a formal manifold and fits
well in the context of jets or formal power series. When dealing with germs, it is
another notion of manifold that is appropriate, and is that of Penon [11], which is
stronger. We shall use it in the following form here:

Let M —R". Call M a submanifold of R" of dimension r<n (or of codimension
n-r), if for each xeR" there is given an isomorphism a:--{x}—>--{0}"
such that the restriction of a to - - {x}Nc&--{x} maps - - {x}NM onto
{0}’ -~ {0}" (this inclusion given by (xi,...,x)~(x},...,X,0,...,0) and
denoted by ;). This definition is to be interpreted in an internal sense.

We shall have occasion to use this definition in stating the Preimage theorem in
the next section. When so doing, however, it will be necessary to strengthen this
notion even further; we shall speak of manifolds ‘cut out by independent functions’.

2. Regular values

As pointed out by Kock (in [9], p. 285), a synthetic formulation (and proof) of the
Preimage theorem (cf. [6], p. 21) is still lacking. We give them in this section.
Denote by D: R™ = R"" the Jacobian map, easily constructed synthetically by
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means of the partial derivative operators d/dx; (cf. [9], p. 55). If xe R"and fe RPR",
D, f=(3fj(x)/3x;);i, where f=(f,...,[p). Closely related is the R-linear map

dfy: T,R" TR,

induced from x, f, by forming the induced map between tangent bundles in the
synthetic context, i.e.,

fP:R"™—RPP

and then restricting to the fiber of R"™ 2% R"above x. As R-linear spaces 7,R"=R"
and Ty, R?=RP?, and modulo these isomorphisms df, is represented by D, f in the

canonical bases. In particular, df, is epimorphic if and only if D, f has a right
inverse.
Some basic Linear Algebra is needed in order to proceed from here.
We say that an n-tuple of elements y,..., y,€ R? forms a linearly independent set
if
VA.[, s An€R [V A,‘#O“’ E A,y,#O]
i=1 i=1

It is shown in [17] that, over a field, this notion is equivalent to the notion of
linear independence which occurs in [7]. In particular, the following two results
hold:

(2.1) For any p x n matrix X € RP", row Rank X' =r iff column Rank X=r.

(2.2) Let Xe RP" and assume Rank X'=p. Then, locally, X has a right inverse.
(Recall that for r=p or n, one writes Rank X =r for row Rank X=r or column
Rank X =r).

The key notion in this section is that of a submersion. If fe R”* and xe R", say
that f is a submersion at x if Rank D, f=p. (Notice that this implies that n=p.) Call
f a submersion if f is a submersion at x for every xe R".

From (2.1) and (2.2) above we deduce the following useful equivalent descriptions
of a submersion.

2.3. Proposition. Let fe RP", xeR™. Then, the Jfollowing are eruivalent:
(i) fis a submersion at x.
(i) V(,-l‘m_,-p,e(z,{af(x)/ax,»l, «»0f(x)/0x;,} is linearly independent.
(iii) df, is locally surjective.

(What (iii) means is that the statement “Vve R [mov =fx~—*EIueR"D
(mou =xAfPu=0)]”’ holds in the topos &).
At this point, we make the assumption about R that the Inverse Function
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Theorem (cf. [11]) holds. (Recall that it does hold in our test model B°P, as shown in
[11]).) We state it in the following way:

VoeR™" [(¢(0)=0~ jj¢ is0)— piso].
The theorem below is usually obtained as a special case of the Rank theorem (cf. [3],

p. 2) and, unlike the Rank theorem itself, it is easy to show in our context and is
sufficient for proving the Preimage theorem.

2.4. Theorem (Submersion theorem). Let fe RP®', xe R" with [ a submersion at x.
Then f |_.. is locally equivalent to n, !0, where n,: R" — RP is the projection described
by (Xys.oey Xpyon s Xp) = (Xyy oeny Xp).

Proof. Because of (1.4) we can restrict ourselves to the case x=0 and fx=0. That is,
instead of dealing with f I,r we shall take the composite

{0} ) = ) — {0}
instead. First, the local right invertibility of the Jacobian at x (which depends solely
on the germ at x) is not affected. Secondly, if the above composite ends up being
locally equivalent to 7 |, so will f |, itself.

Assume that f is defined at stage A € . Notice that f |o: 7=~ {0}">--{0}”is a
map in //A and thus we must consider n,, |0 also in £/A. Since f is a submersion ¢t
0, by Proposition 2.3(ii) there is a jointly epimorphic family {4;—5 A4},c, in ¢,
such that for each i€l there is a p-tuple (i), ...,i,) such that {{*(8f(0)/dx;, ...,
{,"‘(af(O)/ax,-p)} is linearly independent (in #/A,). The uniqueness is the axiom of line
type allows us to translate the above into {3({f)(0)/dx;, ..., 3({*f)(0)/dx;,} linearly
independent (in #/A)).

What we need to show is that, for each i€ /, there is a jointly epimorphic family
{B, IR A}, e, such that, for each je J;, one has y,}‘({,*“f) |0~ n,'j lo (in ¢/B;). Com-
posing coverings will give a covering {B; —% A},x and the desired conclusion.
The argument will therefore be the same were we to suppose that {3f(0)/dx,, ...,
df(0)/0x,} are linearly independent in #/A4, which we now do, for the sake of
simplicity.

Define g, R™ by ¢p=(f, 73 ). Clearly, ¢(0)=0 and the Jacobian of ¢ at 0 is

given by the matrix
_ o -
(5 ©)
ax,' Ji p
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By assumption, Rank Dyf=p. Thus, Rank Dy¢=n and ¢ is a submersion
at 0. By Proposition 2.3(iii) d@, is locally surjective, hence bijective (by the
analogue of Ex. 10.1 in [9]). Hence, ji¢ is locally an isomorphism and so, by the
Inverse Function theorem, ¢ |0 is also locally an isomorphism. By the vniqueness of
inverses, it is enough to suppose that there is B—» 4 such that y*(¢ o) = *¢ |o is
an invertible germ in £/B. Denote by g the composite

ol 7|
= {0} 2= {0} {0},

From the identity y*@ |o° g=y*f !0 follows that if x=(xy, ..., x,) € = —{0}", then

P*élo
X (y*fl(x)’ vesy }'*ﬁ;(x), Xp41seees xn)
g
A
(P*1(X), -, P¥p(X))
and so, that g is 7, lo- This says that y*f |~ n, |o as required. [

Let fe RP®, » € R? be given at the same stage. We say that y is a critical value of f
provided
AxeR" [(f(x)=,v)/\ N det(Dxf)H:O]’

He ()
and y is a regular value of f provided
—(y is a critical value of f).

Equivalently, using the field property, y is a regular value of f iff

VxeR" [(f(x)#y)vHV det(Dxf)H#O],
)

€3
iff
Vxe R" [(f(x)#y)Vf is a submersion at x].
2.5. Corollary (Preimage theorem). Vfe RPY VyeRP [y is a regular value of
S=M=f"Y y} is a submanifold of R" of dimension (n - D).

Proof. Assume f, y to be given both at stage A. If xe, M, then fx=y so that f is
necessarily a submersion at x. By Theorem 2.4, f I_, is locally equivalent to 7, |0.
Thus, there is a jointly epimorphic family {Bi—yL»A},e, and for each iel, iso-
morphisms «;, B; so that

MY
yH(2 = {x)) ———D pH(= = {fx})

a, Bi

—~-{0}" —_— —~—{0}"
plo
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commutes in £/B,. (We do not change the notation of the projections when passing
from < to £/A or from £/A to &/B; since these functors preserve products.)
Consider now the following pullback diagram in ¢/A:

= {ONM — [y} — |

—‘_‘{X} » R7

Il
It says that

1) H{ot=--{xnm.
To show: there is an isomorphism g, making the diagram below commutative:

== {0y Py 1))

yE={x})

Q,

—~={0}"
But this follows readily from consideration of the following pullback diagrams, the
first because of y* is logical, the second because of (1.2):

S ) —— 1
M

and
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To finish the proof, observe now that 8;- Ty*y1 =701, [

3. Sard’s theorem and density of a class of immersions

We wish to establish, in our context, several density results all of which follow,
classically, from a theorem of Sard ([6], p. 39). In the formulation below (for which
we assume, from now on, that R is partially ordered in the sense of [2]), we shall
refer to it as Sard’s axiom (‘I"’ denotes ‘global sections’):

VeeI'(R) Vfe RP® [e>0—>—Vye(—¢ )P y critical value of f].

The positive version of it (not intuitionistically equivalent to the above) will be
referred to, instead, as the axiom of density of regular values:

VeeI'(R) Vfe R"™ [e>0—Hy e (—¢,€)?: y regular value of f].

A full discussion of the validity of these axioms in B°P will be postponed for a
later paper. At present, we shall imit ourselves to the consideration of the global
version of the latter, and its immediate consequences.

3.1. Theorem. In B°P, the following is valid.

Vee I'(R) Vfe I"(R"R") [e<0—HyeI'((—¢€)P): y regular value of f].

Proof. Let ee R, £¢>0 and let fe C*(R",R”). By Sard’s theorem there is ye R?,
ye(—¢€)? with y a regular value of f. We claim that the statement: VxeR"
[fx=y—f is a submersion at x] follows from the above. Let A =(C*(R")/I) be an
object of B. For xe, R", x is represented, modulo 7, by some X e C*(R’,R"). The
assumption fx =y translates into the statement that for every t e Z(I}, the zeros of
the ideal I (cf. [4], [15], or [2]), f(X(#))=y. Since y is a regular value of f, given
te Z(I) we must have p of the vectors in {3f(X(¢)/9x,),...,0f(X(£)/3x,}} linearly
independent, although they may not always be the same p vectors for each te Z(I).
Let

i-al- X, ..., o (X(f))}

U= U(il,---’ip)= {teR” ax;, 0x

ip
linearly independem}.

Observe that U is open in R since both X and df/dx; as well as ‘‘determinant’’ are
continuous functions, so that the assertion that a certain p X p minor is invertible
for a given ¢, remains valid on some neighborhood of ¢ in R". Also, th: W=
Wiy, ....in=(Ugq, ,__,,-p,ﬂZ(I )) cover Z(I) by the above remark. We now claim that
Ay, inE {i x),..., Kia (x)} linearly independent
" d i 8x,~

p
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where
.......... in/1 I Ui, ....ip)-

Suppose then that there is given A;€,,R (denoting U=Uy,, i, and that
Ay V., Ac#0, so that, for some open covering { Vi}ixex of U, Ay, =A4,#0, for
each ke K. Then,

|4 af
Ay ), Ay — () #0,
Vi kgl k axk( )
since Ay = Ay sy is invertible in ¥, so that the sum oo Ar(@®) - (3/0x X X(2)) #0
for each te V. This finishes the proof, as the W, _ ) together with {teZ(I)|
JS(X(1) #y} constitute an open covering of Z(I). [

3.2. Remark. The axiom of density of regular values, stated only for maps
f:R"—=RP, is easily extendible, in view of its local nature, to maps f: M —R?,
where M R” is a submanifold in the sense of Section 2.

Let k=0, n=1and s=("}). The object of polynomials with coefficients from R,
in n variables and of degree <k, is easily described as a subobject P,(n) of RR" which
is isomorphic to R*. Given ¢ € ((R), €>0, and fe P,(n), write | f | <¢ to mean that,
i7 f(x)=Y 4 <k Gy X% X=(X1,...,X,) €R", then for every 1 =a<s, a,e(—¢,¢). Let
Pm=1fePum||fl<el. Under the isomorphism Pi(n)=R* one has Pi(n)=
(-&,€)°. From this and the canconical isomorphisms RS —— R?°™ given by the line
type assumption, follows that there is a natural way to talk about jets as being ‘close
to 0’. We will employ this notion directly, rather than introducing some version of
the Whitney C>-topology (cf. [5], p. 42) which we don’t really need in this work.
However, some comments about the latter are made at the end of Section 5.

The first application of Sard’s theorem concerns immersions. For fe RP®" and
X€R", f is said to be an immersion at x if Rank D, f=n. We say that f is an
immersion if f is an immersion at x for every xe R".

3.3. Theorem (Density of immersions R" = R”, p=2n). Assume p=2n. Then the
Sollowing holds:

Vee I'(R) [a >0- Vhe I(RPY") Ife I(RP™)

(f= Siren fp) /,,\ fiePi(myA(h+f)isan immersion)].
=1

Proof. Let ee I'(R) with ¢>0. Let h: R"—>R?, Suppose (after rearranging) that
{oh(x}/dxy,...,0h(x)/dx,} is linearly independent for every xe R", 1 <s=<n. If no
such s exists, set s==0 in this proof.
Define ¢ : R**"—RP” by
d oh oh
A, X)= ), A, — (X)-
@4, X) /):u ; ax,( ) .

(x).



Synthetic aspects of C™-mappings 51

Notice that ¢ is also a global section. By the axiom of density of regular values,

there is a;,,€'(RP) with a;,,e(—¢¢€)? and a;,; a regular value of ¢. Define
g:R"—RP by

giX)=h(¥)+as, - X541.

By means of the rules for differentiation ({9], §1.2) we can prove that

agl h .
— (X)=—(x) forevery xeR", i<s,
ox; ax;
and
agl ah
x)= (x)+a;,, foreveryxeR".
axs +1 Xs+1

We now claim:

0
{‘ﬁ( X), .. ( xX), —— (x\} is linearly independent,
a a-xx+l

for every xe R".
It is clearly equivalent to try to show:

/_s\iwm sAicAists ey As1€R
J
[VxeR”( E Aje — (x)——ﬂ (x))#OH (%)
j#i ox; ox;

For i=s+ 1, (*) says:

S oh dh
(E Aj— (x)- (x))—am#o. (%)
j=r 7 ox; 0Xg4 1

Since p=2n and s<n, ¢:R**"—=RP could never be a submersion at any
(A, x)eR*XR". That is, one has V(A,x)e R°XR" —(¢ is a submersion at (4, x)).
From the assumption that a,,, is a regular value of ¢ it follows that V(A,x)e
R*X R"(~(¢(A, X)) =a,, ). Equivalently, V(A,x)e R°XR" (¢(A, x) —a;,#0). This
establishes (*;) above.

For i<s, (*) says:

ak h
A=Y )“J (x)+15+l (X)+ A 18501 - 7 () #0.
j=s a ax.ﬂ—l Xi

J#i

Let
oh

axs+l

B=—Ag4 ) = Asi 1541

Then,

A+B= IESA ™ ()_a—x,(x)#o

J#i
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by assumption on A.

Since R is a local ring, either A #0 or B# 0. Suppose that B# 0. We claim that this
implies that A #0, i.e., that =(A4 =0), equivalently.

Indeed, assume A =0. This says:

ah

ah
Z Aj an (X)— 8x,-

iss
i

(xX)=—As41 [—-—él,l— (x)+as+l].

axs +1

Hence, multiplying both sides of this identity by A, , #0, (since B#0) gives

oh
axs+ 1

~ dh 1 oh
,Z — A5 ™ )+ A7), O
by Z i

(x))_as+ I =0,

contradicting that a;, ; is a regular value of ¢. This proves our claim.
Repeat the procedure 7 — (s + 1) times after having obtained a,, ; and g, as above,
thus getting da;, 1, ...,a,€ I'(RP) with a; € (—¢,¢)? for each s+ 1<j=<n, so that

ga(X)=h(X)+ a5, 1 X5+ +ApXy

has all n partial derivatives forming a linearly independent set, hence g, is a
submersion.

Let f(x)=a,, X,,+ - +a,x,. Then, the above says that (A + f) is a submersion
and if f=(/f},..., f,) this gives f; € P{(n), as required. O

4. Transversality

The notion of transversality (cf. [6], p. 27] is an extension of that of regular value.
In order to state it in this context we need some prior notation.

For an R-module Y, if X; and X, are R-submodules, let us denote by X, + X, =
Ix, + x;|x; € X, Ax,€ X,]. This is an R-submodule of Y.

Consider f: R"—>RP?, xe R". There is induced df;: T,R" - Ty, R” and the image,
Im(df,), is an R-submodule of Ty, R”.

If N&»R” and x& R" is such that f(x) € N, then the induced map Tj,,N = Ty, R” is
a linear monomorphism and identifies 77, N with an R-submodule of T, R” as
well.

Now for the main definition in this section. Let f: R"—=R*, xe R" and NG R? so
that f(x)e N. Say that f is transversal to N at x (write ffth) if TyyR"=
Im(df,) + T yN. Say that f is transversal to N (and write me) if

VxeR" [~(f(x)e N)V! fth N].

4.1. Remark. If N={y} for some ye R”, then fh { y} iff yis a regular value of f.
In this case, T,.{ v} =0 and Im(df,) = Ty, R” iff df, is surjective.
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4.2. Remark. If f: R"—R? is a submersion and N R? any, then f hN.

We now need to introduce a notion. For g;,...,8,: RP—R, let

!
Z(gl,...,g1)=ngf’{0}-

We say that gy, ...,g; are ‘independent functions’ if:

VyeZ(g,...,&) Vue T,R? [{(dg)),(u),...,(dg),(1)}

is linearly independent].

4.3. Remark. If g,,...,g; are independent functions then N=Z(g,,...,g8)R"?is a
submanifold. This is because g=(g;,....&):R?—R' is a submersion and
N=g~'{0}. Apply the Preimage theorem (Corollary 2.5). In this case, we say that N
is (a submanifold) ‘cut out by independent functions’, explicitly, we say this when
the following statement holds:

gy, ...,81€ R’ [N=Z(g,,...,8) &> ..., & independent functions].

4.4. Remark. Although this is a local definition (in the sense of 9], p. 175), the
notion of submanifold being local as well, it follows that N is a submanifold of R”.

The following generalizes the Preimage theorem:

4.5. Theorem. Let fe R" = R and N<»R” a submanifold cut out by independent
Sfunctions, and of codimension | <p. Assume that f MN. Then, M=f'(N)R" isa
submanifold of codimension I (cut out by independent functions).

Proof. Let fand N be both given at stage 4, and assume that f MN. Let (A,-—ﬁ»A),e,
be a jointly epimorphic family such that for each i€ /, y*N is cut by gh,....g: RF >R,
independent functions in &/A;. Let gi=(gi,...,g}): RP =R. Claim: (g'°y}f) is a
submersion at eve'y xe R" for which (g’ p*f)(x)=0, i.e., at every xe R" with
(y}f)(x) € p*N. Consider the following commutative diagram in #/A;, where the
first factorization is obtained by applying the chain rule for differentiation, while
the second is taking the image of the first map in the first factorization, with xe R"

arbitrary:

n d(g vy .
TR T(g’ PrINX)

dif), (dg' Yyary

Im(d(}':*f)x) C— T()’,‘f)(.\')Rp

By assumption, g’ is a submersion hence (dg")(,’-f)(x, is locally surjective. The desired
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conclusion would ‘ollow if we could prove that
Ty oo RP = 1m(d(y*f),) + Ker((dg') yrnw)-
From Ker(g') = y,*N follows easily that
Ker((dg) ) = Toenw(¥iN)

i

so that the sufficient condition above translates as
T(',','f)(x)Rp = lm(d(}’,*f)x) + Tiy,’f)(x)(?fN)

which says, exactly, that *fMy*N. By assumption, we only have f M N, but trans-
versality was defined as a stable notion (in the sense of [9], p. 141), hence y}f ) yEN.
This establishes the Claim.

Next, by the Preimage theorem (Corollary 2.5), (g'© y*f)~1{0} is a submanifold
of R"in #/A,, of codimension /. Now,

€2y Yoy =N @) o= N IN)
=y S I(N) =y M).

Therefore, for each i€, y*M is a submanifold of R” in ¢/A, of codimension /. By
the Remark 4.4, we have that M is a submanifold of R"” in &, of codimension /. [

The main theorem in the subject of transversality is Thom’s transversality
theorem (cf. [5], p. 54), of which there are many versions depending on the intended
applications. The following version can be proved in our context and has been
inspired by one given by Boardman and reproduced in [18], p. 17. But first, we state
a result of a general nature.

4.6. Lemma. Ler  be a topos, with R a commutative ring object of line type in the
strong sense. Consider a diagram, where the square in it is a pullback:

X Y

P.B.

R! N R/ — R™M
@ 07

Assume that Y is a submanifold cut out by independent functions and that y is a
submersion. Assume also that ¢th . Then yo ¢rh Y.

Procf. By Theorem 4.5, X is a submanifold of R’ Let xe R’ be such that
(v - @)x)e Y. Then ¢(x) € X and since q)fh, X for every xe R/, we have

Ty, R =1m(d,,) + Ty, X. (*)
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We must show
TyopR™ =Im(d(w ° 9),) + Tyogyn Y. (*%)

Let ve (R™)P)(y - g)w- Since y is a submersion, it follows that there exists (locally)
some u € (R’)f,?(x) such that wou=v. Apply (*) to u to get, again locally, that there
exists u,€(R")? as well as uzeX,ﬂx) such that u=¢@ou,+u,. Define v,=u,; and
V2= o u,. It follows easily that v =(y © ¢)v, + v, and hence (*+) holds. [

Recall from Section 1 the definition of JX : R"—R?°™, Notice that if Ncs RPP+™,
the notation J,f MN is meaningful. We now prove:

4.7. Theorem (Thom’s transversality theorem). Let p=1, k=1, n=1 be given. Let
NS RPP™ pe g submanifold cut out by independent functions.
Then, the following holds:

Vee ['(R) [s >0—Vhe I(R""") Ife [(RP™")

<f= (i oresJp)= A\ Si€ PUODAI A +f)rhN>].

Proof. Let ¢>0 and h:R' =R’ be given. Define y,:R"x RPP" SRP by
Ya(x, £)=J*(h + f)(x). Claim: y, is a submersion. To prove it, it is convenient to
identify fe I'(RP™™) with an s-tuple @ )1<i<ps 1=a<("t"), a,,e(R). Ex-
plicitly,

hf'a)(x) + ai.a) eRS.
a! ha

Ya(X,(a; o)) = <

Investigating the Jacobian of y,, we see that taking partial derivatives with respect
to the a,, already gives s linearly independent columns. Hence, by Remark 4.2,
»,MN and since N is cut out by independent functions, Theorem 4.5 gives that
M=y, I(N) is a submanifold of R”x RS. Consider 7: R"x R®— R®, projection onto
the second factor. By Remark 3.2, the axiom of density of regular values applies to
n |M:M — RS, This says that the following holds:

H(a; o) €R’ [a; € (—€ E)N(a;,) is a regular value of 7 IM].
Let fi(X) =Y aj<k 9 aX% i=1,..., p. By the choice of the a;,, we have fie Pin).

Therefore we have, also

A =1y £;) €FRPY) [i/z"\lﬁepk(n)].

It remains to show that J%(h+f)MN holds for each such f. Denote by
ir:R"—R" x R"™ the map ir=(id. [ f]). Notice that for xe R", Jk(h+f)(x)e N if
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and only if (y4°ip)(x)€ N and that J*(h+f)AN if and only if (y,°i)M N. Hence
assuming that (y,°i)(x)€ N, let us prove that (y,° i) me. This will complete the
proof.

Apply Lemma 4.6 to the diagram

M *N

R R"x RPP" ——s RPU
:‘ y
/ h

Thus, {,m,M implies y,,Oifm,N and so it is enough to show that ifme. But
i/(x)e M says that (x, f) € M, hence we need to show:

To n(R"x R™™™y = Im((di(),) + Ty, M. *)

Since (-)” preserves finite limits, one can show using this that

(diy)
T.R”""‘"‘—:"" Tix.j')(R” x R,,l)un!)

Gdod  fHHN =

T\,R”X TI(R”D“"))

commutes.
A sufficient condition for (*) is then that
iy 1)y . b
Tt\.lv‘w 7/(R )
be surjective, i.e. that m|,, be a submersion at (x, f). Since f was chosen as a
regular value of 7 }M, and since 7 IM(x,f) = f for every xe M, it follows that = IM isa

submersion at (x, f) for every xe R” such that (x, f)e M, from which the above
follows.

5. Stability and singularities

Let fe R¥". A singularity of f is any xo€ R" such that j; f=0. A similar definition
applies 1o germs ¢ge R* -1 in which case we say also that the germ itself is a
singularity.

Let S' >RP™=R'*"be n-'{0}, where 7: R X R"— R" is the projection onto the
second factor, hence a submanifold since 7 is a submersion. Another description of
itis: S' = jge R | Vixe D(n) g(x) = g(0)]. Clearly, x,e R"is a singularity of f if and
only if J'f(x,)=js(fx)€S".

Let x,€ R" be a singularity of fe R*". Call x, non-degenerate if J'f(xy)M, S

Xy
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Call fe R" a Morse function if
Vxe R" [x a singularity of f—x is non-degenerate].

An immediate application of Thom’s transversality theorem (Theorem 4.7) is the
following:

5.1. Corollary. (Density of Morse functions.)
VeeI'(R) [e>0—Vhe I(RR") Hfe I'(RR")
(fe P{(n)A(h +f) is a Morse function)]. 0

5.2. Remark. It is also possible to give a synthetic proof of the following statement
(which we leave to the reader):

Vfe RR" VxeR" [x is a non-degenerate singularity of f

o x is a singularity of fA(62f(x)/6xi6xj)ij#0].

The matrix \'¢32f(x)/¢3x,x,-),'jeR”2 is called the Hessian of f (at x). However, to
proceed to the complete classification of Morse functions in the model B°P, one
must either use the reduction 1o normal form of symmetric matrices from the
constructive point of view (as in [16]) or employ the results of Arnold ([1], pp.
46-59). In either case, the result would give a classification of the unfoldings of
germs of Morse functions (as in [18]).

The classification of singularities is with respect to the relation of equivalence of
germs, as defined in Section 1. The general problem having proved too difficult,
attention was soon focussed on a class of stable singularities (or singularities of
stable mappings). For many pairs of dimensions (n, p), the class of stable smooth
mappings R” —R? turned out to be open and dense in the Whitney C*-topology, as
well as easily classifiable according to equivalence (cf. [5]). Stability itself was not a
very manageable notion, however; an equivalent condition according to a deep
theorem of Mather (cf. [5], Theorem 1.5)), is that of infinitesimal stability which is
much easier to apply. Moreover, it can be stated and even motivated from the
synthetic point of view. In order to understand this motivation, let us recall that a
smooth mapping f: R” = RP? is called stable if there exists an open neighborhood W;
of f (in the Whitney C*-topology) such that for any ge C*(R", RP), if g€ W, then
g~f. This says, precisely, that the orbit of f under the action of the group
G = Diff(R") x Diff(R?), where the action is given by (gh)- f=h ofog! for
(g, h) € G, is open in the Whitney C*-topology. It would therefore be enough to have
the map

Y
G— C™(R",R?)

given by ys;(g,h)=hofog ! a local homeomorphism at (lg», 1gp). If we had a
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notion of derivative for maps between function spaces, as well as an appropriate
version of the Inverse Function theorem in this generality, a sufficient condition
would then be that ‘(d¥/)p1g»)’ D€ surjective, i.e., that y, be a ‘submersion’
at (1gn, 1rp). The first requirement is no problem in our context, or for that matter
in the context of Frechet manifolds (cf. [5], III. §1); it is the lack of an Inverse
Function theorem in both cases which causes Mather’s theorem to be non-trivial.
However, just as with Frechet manifolds, the above considerations lead us too, in
the synthetic approach, to the definition of infinitesimal stability. Let us now justify
this remark.

Let fe R?®. We can form Tf(R”R") = [(RPR")D] 7, and call this the object of vector
fields along f. For 1gne R™, it is easy to see that s€ T (R™) iff se (R"™*)P and
n(s) = Ign, i.€., iff s is a vector field on R" (in one of the various forms of the notion
afforded by cartesian closedness, (cf. [9], §1.8), namely, as infinitesimal deforma-
tions of the identity map).

Call fe R infinitesimally stable if the following holds:
Vwe Vect(f) Ise Vect(R") Ate Vect(R?) (w=dfos+tof).
Consider next the group
G= Units(R"R") X Units(R”Rp)

and let G -2 R”*" be given by ys(g,h)=ho fogl.

Because R” is infinitesimally linear, so is R"* as well as Units(R™") (cf. [9], Exer-
cise 6.5). Hence, T, R"(Units(R"R")) is an R-module. From [9], Corollary (8.2)
follows that if s is a vector field on R"™ then for every de D, s(d) is invertible with
inverse s(—d). Therefore:

T, R,,(Units(R"R")) =T R"(R"R") as R-modules. (5.3)
Since ()P preserves finite limits, we also have
TUR", lRI’)G = Tan(R"R") X TlRp(RpR”)- (5.4)

The map p, defined above induces a map y}) which restricts (since y,(1gn, 1 gr) =f) to
the linear map

@Y1 1)

ThggnG * T;‘(R"’R"),

called the derivative of y, at (1gn, 1gr). The following statement has therefore a

meaning in the synthetic context although it does not have one in the usual theory of
C*™-mappings.

5.5. Proposition. For any fe R, S is infinitesimally stable if and only if y, is a
submersion at (1gn, 1 pp).

Proof. Consider the following maps, induced by composition with f:
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R™"\D

a;=(R"™") (R7™)P,

O
_—_—

ar=(R")~" (RPO)R";

a, is ‘composition with df on the left’. Similarly,

o/\D
ﬂ,_(Rp"")D_(f_.)__.(--" )2,

(RP"Y

B = ReO)Rr L2, (ot

B;‘ is ‘composition with f on the right’. One uses &} and Ff when regarding vector
fields as sections of the projection of the tangent bundle, which is the usual
definition of vector field. The restrictions below are well defined and linear; we
denote them by the same letters.

S (- 73 P ,.

T (R™) —— T,RP™;
BPhyr ,
13, RP™) —— T,RP™).

From the linear isomorphism of (5.3) one derlves a new map (af) 1. Obtained from
(@) as follows: if se T, R,,(R" V=T, R,.(Umts(R" ")) let (A1) = (@) 1alS 7).
We claim that the statement we wish to prove will follow from

(d}’f)(lnn. 120 = (df)an ° proj, + (ﬂf)lkp ° Projz, (*)

where proj,, proj, are the projections associated with the product in (5.4). For, y,is
a submersion at (1zn, 1gp) if and only if (@y)(14n, 1, 18 locally surjective, and on the
other hand (af),R,,o proj; + (81, © Projs is surjective if and only 1f fis mflmtesn-
mally linear by defmmon Let us then establish (*). Given we Tf(RP "), seT, AR" )
and te T, R,,(R” )and de D, one writes (cf. [9], §1.7)

wd)=dfes ' (d)+Hd)of
whenever there exists a unique
1: D)~ R

such that /(d,0)=dfos '(d) and /(0,d)=1t(d)° f letting then w(d)=/d,d). It is
clear that I(d,,d,)=Hd>)° fo(s~'(d))) has these properties so that w(d)=1/(d,d)=
(d)ofos Y d)=(tofos ")d)=dys(s t)d). This finishes the proof. [J

We close this section with some informal remarks about a possible notion of
stability in this context. In order to define it, some version of the Whnmey topology
is needed. We propose a nction of open neighborhood of fe RP® in the style of
Penon [11, 12] leaving the mvestlgatlon of its properties for a future occasion.

For fe RP®, and xe R", jXf, the jet of f at x, may be viewed as an element of
some R°, where we have an apartness notion #: invertibility. When we write
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j¥f#0 we intend it in this sense.
Write f#,0 to mean:

Fk=0dxeR"j f#0
and f #, g to mean:

(f_ g)#oco-

Notice that —(f#,0) is the infinitesimal version of the smallness notion
employed for polynomials in 4.7 and 5.1 of this paper. But such results need not
be true in the infinitesimal versions.

One needs then to introduce what one might call a Whitney-Penon neighborhood
of f to mean any U RPY such that

Vge RP [g#a. fVge U].
A corresponding notion of stability would then read:

[ is stable <4 Vee R [g#, fVg~fl,
where . ,
g~f “g dneUnits(R™") Tk e Units(R”") [k fo h=g].

This definition applies to germs (as well as mappings) ‘‘from R" to R?”’.

In this context, Mather’s theorem ([5], Thm. 1.5) may be interpreted as saying
that an Inverse Function theorem for mappings y between function spaces, would
be true if restricted to the infinitesimally linear y (recall that the latter can be
expressed, synthetically, by the condition ‘‘dy is surjective’’).

6. Unfoldings

As mentioned in Section 5, the notion of stable mapping is important from the
point of view of the theory of singularities, on account of the resulting simplifica-
tion in the classification task. But another motivation for the study of stable maps
comes from ideas of R. Thom and his intended applications to the natural sciences
(cf. [18], 13} among the sources quoted here). This point of view also led naturally to
the consideration of smooth r-parameter families of (potential) singularities, the
unfoldings of singularities. Which germs gave rise to stable unfoldings was partially
answered by means of the notion of a finitely determined germ, which is easy to
express svnthetically:

Agermpe R? s said to be k-determined if

VweR? " [GEw) =jé(@N—(w~ )]

and finitely determined if k-determined for some k=0. (A weaker version of the
above may be more appropriate if trying to work with this notion in this context.)
On the other hand, the categorical point of view introduces an appreciable simpli-
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fication when dealing with unfoldings. Let us restrict ourselves to germs ¢ : A(n)— R
such that ¢(0) =0, in &. For each r=0, one has the topos £/4(r); the functor § —
&/4(r) is given by:

X~X= <X><A(r) —n>A(r)), fF=fxid,

and is logical; so R maps to R having the same ‘properties’ as R. (cf. the remarks of
Lawvere in [10] on how to obtain and utilize new models of Synthetic Differential
Geometry out of old models, the above method being one of those considered).
Denote also by &/4(r) 9, & the functor given by

Y-oA()-Y; fef

By an r-unfolding of ¢:A(n)—A in & we mean a map &:A(n)—4 in §/4("),
satisfying: o

A(n) — 4

I

n 1+r
Uy, Ty

A(n+r)T A(1 +r)

commutes in &.
By virtue of cartesian closedness, we can easily establish the following:

6.1. Proposition. The following constitute equivalent data for a given ¢ : A(n)—A4
in &
(i) and r-unfolding @ of ¢;
(ii) a map f:A(n+r)—4 in & such that f |A(,,)x 0y =@ (usual definition of
unfolding, cf. [18}, Definition 3.1);
(iii) @ map f:A(r)— 44" in & such that f(0)=¢. (This is the point of view of a
deformation of ¢.)

6.2. Remark. Notice that, because of our definition, an unfolding of a germ in ¢
““of a map from R"to R”’ is itself a germ (but in ¢/4(r)) ‘‘of a map from R"toR”.
This means that all the definitions that we have given for germs, apply to unfoldings
as well. It is also true that theorems about germs (if internally valid) remain true
when interpreted as theorems about unfoldings of germs. This is, potentially, a
powerful method, not exploited in this paper except for the following simplification
of the ordinarily quite complicated notion of equivalence for unfoldings (cf. [3], p.
121; [18], p. 59).

Let &:4A(n)—~A and ¥:A(n)— 4 in &/A(r) be r-unfoldings (of ¢ : A(n)—4 and
w:A(n)—A4). Say that @ and ¥ are equivalent r-unfoldings if there exist invertible
germs ¢« : A(n)—>A(n) and B: A— A4 in 4/A(r), such that ¥=go doa". If, further-
more, ¢ = i, so that both @ and ¥ are unfoldings of the same germ, ¢, then we can
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say that @ and y are equivalent r-unfoldings of ¢ if @ and ¥ are equivalent
unfoldings with a and f, and furthermore da I Amx {0} and a8 IA(,,,X{O} are both the
identity map. (A little bit of work is actually needed to show that this is the same
notion as the usual one, but we leave it to the interested reader.)

To see how natural the point of view of comma categories is when dealing with
unfoldings, notice that a germ ¢ :4(n)—4 in &, when regarded in £/4(r) via the
functor ¢ — &/4(r), becomes an r-unfolding of ¢ and is that which is usually
labelled the trivial r-unfolding of ¢.

Not always do unfoldings live in the same topos, yet they must be compared. This
is done by means of the functors &/4(s) L= &/4(r) induced by composition with
maps y: A(r)—A(s) in &. Thus, let @ be an r-unfolding and ¥ an s-unfolding (not
yet necessarily of the same germ) of germs 4(n)—4 in é. A map @ — ¥ is a 3-tuple
(v.a, B) with y:A(r)—A4(s), a:A—p*A and B:v*A(n)—A4(n), such that y*® =
ac Yo p. If furthermore @ and ¥ both unfold ¢, then require that a and 8 above
setisfy

n 1

n+r Uy,
A(m; A(n+r) A<——'——*A(l +7)
\\ 9 and Oq
U:‘s\ u=+5
A(n+5s) A1 +59)

are commutative in ¢. (These diagrams express that @ and § are deformations of the
identity.)

We end with an elaboration of a remark made by Kock (cf. [8]) about Singularity
theory. It is the finitely determined germs which are those for which stable unfold-
ings exist. Now, the property of being k-determined for a germ at 0, however, is
more a property of its k-jet at O than of the germ itself; indeed, being k-determined,
the germ would ‘look like’ its jet under a suitable change of coordinates (equi-
valence). Therefore, what this amounts to, is that it is the k-jets themselves that
should be classified under equivalence and, since we are interested in singularities,
the task of Singularity theory is then to classify, for each k,n, p, the equivalence
classes of 0-preserving maps D, (n)— D(p) under the relation of equivalence. This
is, in fact the point of view which is usually taken when actually giving a classifica-
tion in low dimensions (cf. [3], Chapter 15; or [18], §5).
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