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0. Introduction 

This paper deals with some aspects of the theory of C”-mappings which may be 
profitably studied in the context of Synthetic Differential Geometry. 

A special model that is particularly adapted to test our synthetic definitions and 
statements is the topos B”P described by E. Dubuc (cf. [4], also [15], and [9]). The 
category B is the category of C--rings of the form C@‘(RII)/I) where I is a local ideal. 
This means that, for f e C”(R”), f E I if and only if the germ f Ix belongs to I IX, the 
ideal generated by the germs g lx of ge I. The Grothendieck topology on B”P is 
generated by the families of the form (C”( U)-+Y( U$)ieJ, where V is open in Rn 
and { O;.}jeJ is an open covering of U. 

The starting point is the synthetic theory of jets given by A. Kock in [8], of which 
we develop the analogue for germs (Section 1). This is based on a synthetic notion of 
germ which is implicit in the work of J. Penon in [l 11. A suggestion of A. Kock (in 
[9], p. 285) then led us to a synthetic formulation and proof of the Preimage 
theorem (Section 2). In order to prove some density results, some version of Sard’s 
theorem is needed. We give one that is true in B OP and then use it to give a proof , 
that a certain c!ass of immersions is ‘dense’. We then study transversality from the 
synthetic point of view, and establish, synthetically, two results: the Transversal 
Preimage theorem and Thorn’s transversality theorem (Section 4). An application of 
the latter is the density of Morse functions (Section 5). The basic notion of stability 
of smooth mappings is investigated in one of its forms, namely, infinitesimal 
stability, as this is the most natural from the point of view of Synthetic Differential 
Geometry (Section 5). Finally, we just hint at the advantages of studying unfoldings 
of singularities from the synthetic point of view (Section 6). 

We assume familiarity with A. Kock’s textbook and reference work [9]. 
Throughout the sections of this paper, assumptions about the ring object R in the 
general topos c;f’ in which we work, are made in the measure that they become 
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42 IU. Bunge 

needed. These assumptions are intended to be cumulative, but nowhere in this paper 
are they listed together. They are all valid in BOY 

I. Synthetic theory of germs 

Let A be a topos, and R a non-trivial commutative ring in G” assumed to be of line 
typ (or to satisfy the Kock-Lawvere axiom) in the strong sense (cf. [9], p. 28). 
Explicitly, for each n 2 1, k 11, denote by 

y,J E Rn 1 any product of k + 1 or more 
of the yl, . . . , yn is 01, 

and for rtz 1, krl, pal, denote by cCkpn: RS+RPDk(“’ (where s=p*(“ik)), the 
map whose exponential adjoint R” x Dk(n)-+RP is given by the rule: ((a,i), x)+ 

(C (I sl ua,xQ), where 1 SUS(~+~ k ) and 1 I isp. With these notations, the axiom 
may be stated: 

For each n 2 1, k z 1, p 11, the map afike n is an isomorphism. 

The infinitesimal subobjects Dk(n)4R”, as well as their union D,(n)4R”, play an 
essential rale in Kock’s synthetic theory of jets (cf. (8)). For XE Rn, a k-jet at x ‘of a 
map from Rn to RP’ is simply a map XC Dk(n)-*Rp (not an equivalence class of 
maps). Maps x + D,(n) + RP are said to be jets at x. Notice that, in general, x E Rn is 
a generalized eiement defined, e.g., at stage A, where A is an object of 8. Then, 

z E Rn 1 z = x+y, for some y E D,(n)1 makes sense as a subobject of R” 
only in the topos P /A, where by abuse of notation we still denote by I?” the image of 
R” under the (logical) functor (5 *VA given by X-,x= (X ~~4 -%A). 

In order to deal with germs in an analogous way, one resorts to the infinitesimal 
neighborhoods of 0 considered by Penon (111. These are given, for each n I 1, by 
the objects 

A(n) = Y=~Y,,-,Y,JER”~~~ (!, yi=o>ll 
= -11 {O}GR”. 

For n = 1, A(n) Is denoted by A. In the model BOP, A is represented by the germs at 0 

of smooth real valued functions, i.e., by C;(R) (cf. [ 1 I]). For XE R”, let us say that 
a map x+ A(n)-+RP is a germ at x ‘of a map from R” to RP’. As before, if XE~R”, 
then the above is to be interpreted appropriately as a map in WA. 

One immediately notices that 

x+A(n)=+x} (1.1) 

therefore, that the notion of germ that we have given is that which is contained 
‘5 formulation (cf. [I 11) of the Implicit Function theorem. 

at R is a fiefd object in the sense of Kock ([7], or [9] p. 267). 
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This means that, in addition to being as non-trivial commutative ring in 8, R 

satisfies the axiom 

vx *,...,x,ER [- ($=Qj-2, WO)] 

where “x#O” stands for “x is invertible”. It follows that R is SI local ring, in the 
sense that: 

V’, YE R [(x+y)#O-+(x#O)v(y#O)]. 

Also in view of the field axiom, the statements “ 1 (x= 0)” and “(x# 0)” become 
interchangeable. 

We may now state some simple facts: 

A(n) = An. 

This follows from the fact that -1 commutes with A. 

(1.3) A(n) is an R-linear subspace of Rn. 

Use that I? is a field. 

(1.4) For any XE R”, there is an isomorphism A(n)+x+A(n), given by addition 
with x. 

The synthetic basis for relating germs and jets is the inclusion, for each n 2 1, 

&d~)~~ W (1.5) 

IfY=h..., Y,) E D,(n), then for some k 5 1, y E Dk(n) hence A:= i ( y”’ ’ = 0). This 
implies that A?, 1 T( y”’ ’ # 0) and SO, that 1 V,Y= l (yi # 0), hence 11 (Al= l yi = 0) SO 
that y E A(n). 

Composition with (1.5) induces, for any p ~1, a map denoted 

jo” : Rp’(‘) 3RpD,“) 

which is said to assign, to a germ at 0, @ E Rp”“), its jet at 0. Similarly one defines jAy 
as well as j,k, for arbitrary XE Rn, k 1. 

Composition with the inclusion D&&R” induces a map also denoted by jr= 
The factorization of the above subobject through A(n)U?” (given by (1.5)) is a 
simple way to express the useful fact that the jet at a point of a map from R” to RP, 
depends solely on the germ at the point of the map. Similar statements can be made 
about jets and germs. 

Closely related to the jet maps j,k are the following, which we will need in 
proof of Thorn’s transversality theorem. For each h E RpR” and k0, define 

Jkh : R” +RPDkfn’ 

the 

as follows: for XE R”, let J;(x) = jth, where h,e- RP”” is the image of h under the 
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map 
R@l: RPRn+RP 

R” 

induced by composition with a,=x+ (-) : R” +R”. If xeA R”, h, is to be interpreted 
in k/A, as usual. 

(1.6) LetxER”andletx’Ell{xp\. Iff:ll{x}--‘RP, thenf(x’)Ell{j(x)}. 

This holds on account of the monotonicity of IIT . 

An immediate consequence is the useful remark that: 

(1.7) Every map 11 (x} -+ RP taking x to .Y, factors through 1~{ y} GRP. 

This has a number of consequences in the form of simplified definitions. Firstly, 
since a germ is a map 17 {x} -+ 7 l{ y) for some x, y, composition of germs is easy 
to define. Secondly, a germ @ : 11 {x} -+ 11 {x} is an invertible germ if the map Q, is 
an isomorphism. Finally, to say that germs @ : 11 {x} -+ Al{ y} and @‘: 11 {x’} -+ 
7-l ( y’) are equivalent germs, all we have to say is that there exist invertible germs 
01: -7(x) -+~l(x’} and /?: -~l(y}-+~l{y’} such that @‘=/+@~a-r. Write 
@ - @’ in this case. These definitions are to be interpreted in an internal sense. 

Restriction to 11 (x} -+ Rn for XE Rn induces for each p ~1 a map denoted 

and is said to assign, to a map f E RpR”, its germ f Ix at x. 
In [8], the notion of manifold introduced is that of a formal manifold and fits 

well in the context of jets or formal power series. When dealing with germs, it is 
another notion of manifold that is appropriate, and is that of Penon [ll], which is 
stronger. We shall use it in the following form here: 

Let M -+Rn. Call M a submanifold of Rn of dimension rc n (or of codimension 
n-r), if for each XER” there is given an isomorphism (~:~~{x}--+~~{O}~ 
such that the restriction of 1y to ~~{x}n~c~~{x) maps ll{x}nM onto 
~~{0}‘c+~~{0}” (this inclusion given by (x1, . . . ,x,)+x1, . . . ,x,, 0, . . . ,0) and 
denoted by u:). This definition is to be interpreted in an internal sense. 

We shall have occasion to use this definition in stating the Preimage theorem in 
the next section. When so doing, however, it will be necessary to strengthen this 
notion even further; we shall speak of manifolds ‘cut out by independent functions’, 

2. Regular values 

As pointed out by Mock (in [9], p. 283, a synthetic formulation (and proof) of the 
Prcimage theorem (cf. [6], p. 21) is still lacking. We give them in this section. 

y D : RpKP -+ RpnR” the Jacobian map, easily constructed synthetically by 
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means of the partial derivative operators a/ax, (cf. 191, p. 55). If xE R” and f tz RpRn, 
O,f = (afj(X)/aXi)ji, where f = (f 1, . . . , fp). Closely related is the R-linear map 

induced from x, f, by forming 
synthetic context, i.e., 

the induced map between tangent bundles in the 

and then restricting to the fiber of RnD ” - R” above x. As R-linear spaces T,R” = R” 
and Tftx)RP= RJ’, and modulo these isomorphisms dfx is represented by &f in the 
canonical bases. In particular, dJY is epimorphic if and only if D,f has a right 
inverse. 

Some basic Linear Algebra is needed in order to proceed from here. 
We say that an n-tuple of elements yl, . . . , y,, E RP forms a linearly independent set 

if 

VA ~,***,A~ER 
[ 

i/li#O+ i hiyi#O l 

i= I i= I I 

It is shown in [17) that, over a field, this notion is equivalent to the notion of 
linear independence which occurs in [7]. In particular, the following two results 
hold: 

(2.1) For any p x n matrix XE RP”, row Rank Xrr iff column Rank XZP. 

(2.2) Let XE RP” and assu me Rank X=p. Then, locally, X has a right inverse. 
(Recall that for r=p or n, one writes Rank X= r for row Rank Xz r or column 
Rank XZ r). 

The key notion in this section is that of a submersion. If f e RPRn and XE Rn, say 
that f is a submersion at x if Rank D,f =p. (Notice that this implies that n up.) Call 
f a submersion if f is a submersion at x for every XE R”. 

From (2.1) and (2.2) above we deduce the following useful equivalent descriptions 
of a submersion. 

2.3. Proposition. Let f tz RpRn, x E R”. Then, the sol/o wing are equivaien t: 
(i) f is a submersion at x. 

(ii) v,,,....,,~,)El”){af(x)/axil’ . . . , af (x)/axip ) is linearly independent . 
D 

(iii) & is loc&y surjective. 

(What (iii) means is that the statement 
(nou = xl\f Du = o)]” holds in the topos 6 ). 

At this point, we make the assumption about 

“VVE RP”[qv=fx+& RnD 

R that the Inverse Function 
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Theorem (cf. [ 111) holds. (Recall that it does hold in our test model BOP, as shown in 
[I I].) We state it in the following way: 

V@ E /zn-ltn, [(e(O) = 0 --+j&$ iso) -+ QJ iso]. 

The theorem below is usually obtained as a special case of the Rank theorem (cf. [3], 
p. 2) and, unlike the Raqk theorem itself, it is easy to show in our context and is 
sufficient for proving the Preimage theorem. 

2.4. Theorem (Submersion theorem). Let f e RpRn, x E Rn with f a submersion at x. 
.,- is locally equivalent to ni IO, where ~ti : R” * R p is the projection described 

by(x,,...,Xp ,..., x,)-(x ,,..., xP). 

Proof. Because of (1.4) we can restrict ourselves to the case .K = 0 and fx = 0. That is, 
instead of dealing with f l.t we shall take the composite 

-+OI “---1-l x ( 1 
fl, 

-11 x if 1 -~~{o}p 
instead. First, the local right invertibility of the Jacobian at x (which depends solely 
on the germ at x) is not affected. Secondly, if the above composite ends up being 
locally equivalent to A; 10, so will f I,y itself. 

Assume that f is defined at stage A E 8. Notice that f 10: 11(O)" -+ 11(O) P is a 
map in c /A and thus we must consider I$ 10 also in 8/A. Since f is a submersion 2-t 
0, by Proposition 2.3(ii) there is a jointly epimorphic family (AjLA}jEl in (‘, 
such that for each k I there is ‘a p-tuple (i,, . . . , iP) such that { cF(af(O)/aXj,, . . . , 
<,?(af(0)/ax,P)) is linearly independent (in (! /A ,). The uniqueness is the axiom of line 
type allows us to translate the above into { a(c,*f )(0)/3x;,, . . . , a(~~f)(0)/8XjP} lineariy 
independent (in t /A,). 

What we need to show is that, for each k I, there is a jointly epimorphic family 

V -X Ai)@ such that, for each j E J,, one has $([Tf) 10 - zt: 10 (in 6 /B,+ Com- 
poiing coverings will give a covering {B k --k A }k E K and the desired conclusion. 
The argument will therefore be the same were we to suppose that {af(O)/llx,, . . . , 
af(0)/axP) are linearly independent in (‘/A, which we now do, for the sake of 
simplicity. 

Define @ Ed RnR” by @ = <f, rri _& Clearly, e(O) = 0 and the Jacobian of @ at 0 is 
given by the matrix 

P 



Synthetic aspects of P-mappings 47 

By assumption, Rank Dof =p. Thus, Rank Do@ = n and # is a submersion 
at 0. By Proposition 2.3(iii) de0 is locally surjective, hence bijective (by the 
analogue of Ex. 10.1 in [9]). Hence, .&@ is locally an isomorphism and so, by the 
Inverse Function theorem, @ lo is also locally an isomorphism. By the Gqueness of 
inverses, it is enough to suppose that there is BAA such that v*(@ 10) = v*@ 10 is 
an invertible germ in b/B. Denote by g the composite 

From theidentity y*@I,og=y*f l~follows that ifx=(.xr,...,x,)E ll{O}‘, then 

and so, that g is I$ lo. This says that y *f 10’ or; lo as required. •I 

Let f e R pRn, y E RP be given at the same stage. We say that y is a critical value off 
provided 

YXE Rn det(D_Vf)H=O 1 , 
and y is a regular value off provided 

i( y is a critical value of f ). 

Equivalently, using the field property, y is a regular value of f iff 

iff 

V&R” 
L 

(f(x)#r)v V det(D,fh#O , 
HE($) 1 

b’x~ R” [(f(x) #y)vf is a submersion at x]. 

2.5. Corollary (Preimage theorem). Vf E RpRn Vy E RP [y is a regular value of 
f-+M=f-‘(y) isasubmanifoldofRnofdimension(n-p)]. 

Proof. Assume f, y to be given both at stage A. If xeA M, then fx=y so that f is 
necessarily a submersion at x. By Theorem 2.4, f i-r is locally equivalent to ni 10. 
Thus, there is a jointly epimorphic family {B; -% A};, 1 and for each i E I, iso- 
morphisms a;, pi so that 
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commutes in UB,. (We do not change the notation of the projections when passing 
from P to k/A or from 8/A to (5’ /Bi since these functors preserve products.) 
Consider now the following pullback diagram in t/A: 

11{x)nb4 - f-‘(y) - 1 

11 x t ) b R" - 

./I, 
It says that 

(J[,) -~{+ll{xpw. 

To show: there is an isomorphism 0, making the diagram below commutative: 

But this follows readily from consideration of the following pullback diagrams, the 
first because of y: is logical, the second because of (1.2): 

-1 

1 

- I+(11 1 YN 

I 

P, 

1 

--(0)” - “l{o}p 
and 
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To finish the proof, observe now that pi* ry*$= r@. 0 

3. Sard’s theorem and density of a class of immersions 

We wish to establish, in our context, several density results all of which follow, 
classically, from a theorem of Sard ([6], p. 39). In the formulation below (for which 
we assume, from now on, that R is partially ordered in the sense of [2]), we shall 
refer to it as Sard’s axiom (‘I” denotes ‘global sections’): 

Vc E T(R) Vf E RpR” [c > O+ 1 Vy E (-42, &)p : y critical value of f 1. 

The positive version of it (not intuitionistically equivalent to the above) will be 
referred to, instead, as the axiom of density of regular values: 

Vc E l-‘(R) Vf E RpR” $z>O+gyE(--c,e)P:y regular value off]. 

A full discussion of the validitv of these axioms in B”P will be postponed for a 
later paper. At present, we shall hmit ourselves to the consideration of the global 
version of the latter, and its immediate consequences. 

3.1. Theorem. In BOP, the following is valid. 

V&ES(R) Vfd(RPR”) [EcO-G~ET((-e,~)~):yregular valueoff]. 

Proof. Let h: E R, E>O and let f E C”(R: Rp). By Sard’s theorem there is YE RP, 
ye (--E, &)P with y a regular value of f. We claim that the statement: VIE Rn 
[ fx=y+f is a submersion at x] follows from the above. Let A = (C”(R’)/I) be an 
object of B. For XE~ Rn, x is represented, modulo I, by some XE C”(R’, R”). The 
assumption fx =y translates into the statement that for every t E Z(I), the zeros of 
the ideal I (cf. [4], [ 151, or [2]), f(X(t)) = y. Since y is a regular value of f, given 
t E Z(I) we must have p of the vectors in {;llf(X(t)/axl), . . . , af(X(t)/ax,)} linearly 
independent, although they may not always be the same p vectors for each te Z(I). 

Let 

u= u(il,...,ip)= (x(t), . . . . E (x(t))] 
jr, 

linearly independent . 
I 

Observe that U is open in R’ since both X and af/ax, as well a!s “determinant” are 
continuous functions, so that the assertion that a certain p xp minor is invertible 
for a given t, remains valid on some neighborhood of t ia R”. Also, the IV= 

w(il , . . ..i& = (Uci,. . . ..i.) KZ(lj) cover Z(I) by the above remark. We now claim that 

(x), . . . , E (x)1 linearly independent 
i/J 
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A %,.....,’ = cwi,, . . . ,ip)M I qi,, .,.) ip))* 

Suppose then that there is given A~Q,R (denoting U= Uti,,_._,iP)) and that 
&I= Vf,,&#O, so that, for some open covering { Vk}kEK of U, AVk~Ak#O, for 
each Jk E K. Then, 

k=l 
l -$ (x)#O, 

k 

since A&=\ /IktllU is invertible in v&, so that the sum Cz= 1 /i&(t) l (W&&X(t)) #O 
for each t E v&. This finishes the proof, as the wfil, ...,iP, together with {t E Z(I) 1 

f(X(f))+y} constitute an open covering of Z(I). Cl 

3.2. IRemark. The axiom of density of regular values, stated only for maps 
f : Rff -+ RP, is easily extendible, in view of its local nature, to maps f : M +RP, 
where b&R” is a submanifold in the sense of Section 2. 

Let krO, nzl ands=(nik ), The object of polynomials with coefficients from R, 
in n variables and of degree sk, is easily described as a subobject p&(n) of RR” which 
is isomorphic to RS. Given E E F(R), c >O, and f~ &(n), write 1 f I< E to mean that, 
if f(x) - C u s&*x”, x=(x1, Ioo9 x&R”, then for every lscrss, a&--E,&). Let 

fEPk(n)Ilfl<c . Under the isomorphism f&(n) = RS one has Pi(n) = 
( -E, e)“. From this and the canonical isomorphisms Rs-“, RPDh@‘, given by the line 
type assumption, follows that there is a natural way to talk about jets as being ‘close 
to 0’. We will employ this notion directly, rather than introducing some version of 
the Whitney C”-topology (cf. (51, p. 42) which we don’t really need in this work. 
However, some comments about the latter are made at the end of Section 5. 

The first application of Sard’s theorem concerns immersions. For f e RpN” and 
SE R”, f is said to be an immersion at x if Rank D,f = n. We say that f is an 
immersion if f is an immersion at x for every XE Rn. 

3.3. ‘Theorem (Density of immersions R” -+ RP, pr 2n). Assume pz 2n. Then the 
f o//o wing holds: 

V&ET(R) E>O-W~ET(RP~“).Y~ET(RP~“) 
[ 

c f= (fl**..* fp)+ A f, E P!(n) l\(h + f) is an immersion . . r-1 >I 
Proof. Let EE T(R) with c>O. Let h : R” -+ R? Suppose (after rearranging) that 
ah(x)/ax, , . . . , ilh(x)/i3x,} is linearly independent for every XE R”, 15s 5 n. If no 

s exists, set s == 0 in this proof. 
Define @ : R’+ * -+RP by 
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Notice that @ is also a global section. By the axiom of density of regular values, 
there is a,, 1 E r(W) with Q,+ 1 E (-e&P and a,, 1 a regular value of #. Define 
gl : R”+Rp by 

By means of the rules for differentiation (191, gI.2) we can prove that 

(x) for every XE RR, i cs, 

(x) + a,, l for every XE Rn. 

We now claim: 

is linearly independent, 

for every XE Rn. 
It is clearly equivalent to try to show: 

agl 
ax (x) . 

i 

For i=s+ 1, (*) says: 

s 

CA 
ah 

j z (x) -A (x) 
j=l 

j 

ax 
> 

-a,+,#O. 
s+ 1 

($1 

(*1) 

Since pr2n and ssn, @: Rs+* +RP could never be a submersion at any 
(5x) E RSx R”. That is, one has V(A, x) E RSx R” l(@ is a submersion at (A, x)). 
From the assumption that as+l is a regular value of Qi it follows that V(A, x) E 
RS x R”(l(@(A, x)) = as+ 1). Equivalently, V(A, x) E RS x R” (#(A, x) - as+ l # 0). This 
establishes (*,) above. 

For As, (*) says: 

Let 

B= -A,+* $ (X)--s+las+l* 
s+l 

Then, 

A+B= c n@(x) 
jss J aXj 

-5 (x)#O 
i 

jti 
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by assumption on h. 
Since R is a local ring, either A # 0 or B # 0. Suppose that B # 0. We claim that this 

implies that A #O, i.e., that ‘(A = 0), equivalently. 
Indeed, assume A =O. This says: 

Hence, multiplying both sides of this identity by As+ I #0, (since B#O) gives 

contradicting that a,, 1 is a regular value of Q). This proves our claim. 
Repeat the procedure n - (s + 1) times after having obtained a,+ 1 and gl as above, 

thu:s getting a,, lt l Do , a,Ef(RP) with ajE(-c,c)P for each S+ 1 cjsn, so that 

has all n partial derivatives forming a linearly independent set, hence g, is a 
submersion. 

Let f(x)=a,,+ lx,, I+ -0. + a,x,. Then, the above says that (h + f) is a submersion 
and\ if f= (Jr, . . . . fp) this gives h E P:(n), as required. q 

4. ‘Transversality 

The notion of transversality (cf. [6], p. 271 is an extension of that of regular value. 
In order to state it in this context we need some prior notation. 

For an R-module Y, if X1 and Xl are R-submodules, let us denote by Xi + &= 
Ix1 -b -9 1 q E X1 Ax2 E X2!. This is an R-submodule of Y. 

Consider f: R” -+RP, XE R”. There is induced dJV : 7;R” --+ Tfcx, RJ’ and the image, 
Im(ldJ,), is an R-submodule of TfI,,RP. 

If NG RP and x E R” is such that f(x) E N, then the induced map TffXJN -+ TJcX, RP is 
a linear monomorphism and identifies &,N with an R-submodule of 
well. 

Now for the main definition in this section. Let f : R” -+RP, XE R” and 
that j’(x) E N. Say that f is transversal to N at x (write fh,.N) if 
Im(cif,) + T~~_,,iv. Say that f is transversal to N (and write f mN) if 

VXE Rn [l(f(x)cN)vl ffh,N]. 

Nc,RP so 

?f(.u)RI’= 

4.1. Remark. If N= ( y) for some _yE R P, then f h ( y} iff y is a regular value off. 
In this case, T, ( _r,} = 0 and Im(df,) z 7Jf(,V,RP iff dfr is surjective. 



Synthetic aspects of C”-mappings 

4.2. Remark. If f: R n +RP is a submersion and Nc;RP any, then f mN. 

We now need to introduce a notion. For gl, . . . ,gl : RP+R, let 

53 

ml, .-09 a= h g,“(O). 
j=l 

We say that gl, . . . . gl are ‘independent functions’ if: 

‘uEm?l,..., gJ tf4.4 E TyRP W~l),o4~ l l l 9 I&r)yW) 

is linearly independent]. 

4.3. Remark. If gl, . . . , gl are independent functions then N = Z(gt , . . . , gr)q RP is a 
submanifold. This is because g = (g,, . . . ,g,) : RP +R’ is a submersion and 
N=g-‘(0). Apply the Preimage theorem (Corollary 2.5). In this case, we say that N 
is (a submanifold) ‘cut out by independent functions’, explicitly, we say this when 
the following statement holds: 

33 9 l -•,g+R RP [N= Z(g, 9 .-. ,gr)Ag1, l -• 3 gl independent functions]. 

4.4. Remark. Although this is a local definition (in the sense of [9], p. 175), the 
notion of submanifold being local as well, it follows that N is a submanifold of RP. 

The following generalizes the Preimage theorem: 

4.5. Theorem. Let f E R n +RP and NGRP a submnnifold cut out by independent 
functions, and of codimension kp. Assume that f m N. Then, M= f -‘(N&R* is a 
submanifold of codimension I (cut out by independent functions). 

Proof. Let f and N be both given at stage A, and assume that f m N. Let (Ai AA)i, 1 

be a jointly epimorphic family such that for each i E I, r;N is cut by g\, . . . , g; : RF + R, 
independent functions in 8/Ai. Let gf = (81, . . . , gi) : RP + R’. Claim: (g’ 0 $f) is a 
submersion at every XE Rn for which (gi 0 YJ’f )(x) = 0, i.e., at every x E R” with 
(vFf)(x)E y:N. Consider the following commutative diagram in h /Ai, where the 
first factorization is obtained by applying the chain rule 
the second is taking the image of the first map in the first 
arbitrary: 

for differentiation, while 
factorization, with XE R” 

, 1 Mf)> ,;,*f)(_v)R/i’ 4Y;j,~v~ 

Im(d(y;f M I 

By assumption, g’ is a submersion hence (dg’)(Y:f.)(sj is locally surjective. The desired 
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conclusion would hollow if we could prove that 

From Ker(g’) = y,*N follows easily that 

so that the sufficient condition above translates as 

T (p;n(x,RP = Wdo5?f)x) + ~~~J-&5W 

which says, exactly, that y:f h y,% By assumption, we only have f hlv, but trans- 
versality was defined as a stable notion (in the sense of [9), p. 141), hence y:f ,h y,% 
This establishes the Claim. 

Next, by the Preimage theorem (Corollary 2.3, (g’* vTf)-‘(0) is a submanifold 
of R* in k /A,, of codimension /. Now, 

Therefore, for each in I, y,% is a submanifold of R” in 6/A; of codimension 1. By 
the Remark 4.4, we have that M is a submanifold of R” in 6, of codimension 1. Li 

The main theorem in the subject of transversality is Thorn’s transversality 
theorem (cf. [S], p. 54), of which there are many versions depending on the intended 
applications. The following version can be proved in our context and has been 
inspired by one given by Boardman and reproduced in [ 181, p. 17. But first, we state 
a result of a general nature. 

4.6. Lemma. Let I[ be a topos, with R a commutative ring object of line type in the 
strong sense. Consider a diagram, where the square in it is a pullback: 

X-Y 

I I P.B. 

RI-R I - R’” 
0 ri/ 

Assume that Y is a submanifold cut out by independent functions and that w is a 
xrhmersion. Assume also that @m X. Then ry 0 (I rh Y. 

Proof. By Theorem 4.5, K is a submanifold of R’. Let XE R’ be such that 
(w $)(x) E Y. Then e(x) E X and since 0 fh, X for every XE R’, we have 
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We must show 

ql/o,,oRrn = Wd(W O @)x) + 7&b)(*) y* (**) 

Let v E WW(, o @)(x)9 Since w is a submersion, it follows that there exists (locally) 
some u E (R’$& such that w 0 u - - v. Apply (*) to u to get, again locally, that there 
exists u1 E (P)? as well as uz~X,,& such that u =@ou~ + ~2. Define v1 = u1 and 
v2 = v/ 0 u2. It follows easily that v = (w 0 @vi + v2 and hence (**) holds. Cl 

Recall from Section I the definition of JL : A’” +RpDk’“‘. Notice that if N&RpDk’“‘, 
the notation J,kfhN is meaningful. We now prove: 

4.7. Theorem (Thorn’s transversality theorem). Let pr 1, k ~1, n 2 1 be given. Let 
&RPDkfn’ be a submanifold cut out by independent functions. 

Then, the following holds: 

V&d(R) 
[ 
~>0-)Vhd(RpR”) Zfd(RpR”) 

fp)-+ A hEPi(n)AJk(h+f)dIN . i=l >I 
Proof. Let e >O and h : R’ +RP be given. Define yh : Rn x RpDk(n’+RpDA(n’ by 

yh(x,f) = Jk(h + f )(x). Claim: yh is a submersion. To prove it, it is convenient to 
identify f E r(RpDk@’ ) with an s-tuple (ai,a)15i5p, 1 lar(“ik), ai,+T(R). Ex- 
plicitly, 

Yh(x, !ai, a)) = 
(h!a’(xz-+aisa)i,aERs. 

Investigating the Jacobian of Yh, we see that taking partial derivatives with respect 
to the ai,, already gives s linearly independent columns. Hence, by Remark 4.2, 
Yhf)N and since N is cut out by independent functions, Theorem 4.5 gives that 
M= y&N) is a submanifold of Rn x RS. Consider TC : Rn x RS-+RS, projection onto 
the second factor. By Remark 3.2, the axiom of density of regular values applies to 
II IM : M-+RS. This says that the following holds: 

2(ai,.)ERS [ai,aE (-E,E)A(ai,a) is a regular value of II 1~1. 

Let fi(x) = C lalSk ai,aXa, i= 1, . . . , p. By the choice of the ai,@, we have fi E Pi(n). 

Therefore we have, also 

It remains to show that Jk(h + f>m N holds for each such f. Denote by 
ir: R?l *R?l X RflDhtn) the map if= (id, [f 1). Notice that for XE Rn, Jk(h + f )(x) EN if 
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and only if (Y,, 0 if)(x) E IV and that J”(h + f) h,N if and only if (vh 0 if) m,N. Hence 
assuming that (y, 0 i,,(x) E IV, let us prove that 0-Q 0 if) h,N. This will complete the 
proof. 

Apply Lemma 4.6 to the diagram 

R”- R” X R/YDhtn) -- RpDh’“’ 
‘.I Yh 

Thus, i,h, M implies yho i/h, N and so it is enough to show that i~fh,M. But 
:‘,(x)E M says that (x, f)e M, hence we need to show: 

rc \. /,(R” x R ‘4rn’) = Im((di&J + Qf, M. (*) 

Since (- jD preserves finite limits, one can show using this that 

commutes. 

A sufficient condition for (*) is then that 

be surjective, i.e. that n l-w be a submersion at (x, f ). Since f was chosen as a 
regular value of n 1 ,w, and since n 1,%1(x, f) = f for every XE M, it follows that n IM is a 
submersion at (x, f) for every x E RN such that (x, f) E M, from which the above 
follows * :-- 

5. Stability and singularities 

Let SE RKF. A singularity off is any _uo~ R” such that j,&f = 0. A similar definition 

applies to germs @E R”’ + -l(n), in which case we say also that the germ itself is a 

singularity. 
Let Si-+RL)(“)=R1’” be n-‘CO}, where 7t:RxRR-+Rnis theprojectionontothe 

factor, hence a submanifold since T[ is a submersion. Another description of 
= iK E RI’(“) j Kxu D(n) g(x) =g(O)i. Clearly, xo~ Rn is a singularity off if and 

J $J==(SB,) =$~(JU[,) E s’. 

Kn be a singularity off E R ‘“. Call x0 non-degenerate if J ‘f(xo) h,, S? 
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Call f E R” a Morse function if 

VX E Rn [x a singularity of f-+x is non-degenerate]. 

An immediate application of Thorn’s transversality theorem (Theorem 4.7) is the 
following: 

5.1. Corollary. (Density of Morse functions.) 

(f E P:(n) n(h + f) is a Morse function)]. 

5.2. Remark. It is also possible to give a synthetic proof of the following statement 
(which we leave to the reader): 

Vf E RR” VXE R” [x is a non-degenerate singularity off 

Hx is a singularity Of fA(a*f(X)/aXiaXj)u #O]. 

The matrix <a2f(X)/aXiJCj)~ E Rn2 is called the Hessian /?,f f (at x). However, to 
proceed to the complete classification of Morse functions in the model B”p, one 
must either use the reduction to normal form of symmetric matrices from the 
constructive point of view (as in [16]) or employ the results of Arnold ([l], pp. 
46-59). In either case, the result would give a classification of the unfoldings of 
germs of Morse functions (as in [IS]). 

The classification of singularities is with respect to the relation of equivalence of 
germs, as defined in Section 1. The general problem having proved too difficult, 
attention was soon focussed on a class of stable singularities (or singularities of 
stable mappings). For many pairs of dimensions (n, p), the class of stable smooth 
mappings R ’ +RP turned out to be open and dense in the Whitney P-topology, as 
well as easily classifiable according to equivalence (cf. [S]). Stability itself was not a 
very manageable notion, however; an equivalent condition according to a deep 
theorem of Mather (cf. [5], Theorem 1 S)), is that of infinitesimal stability which is 
much easier to apply. Moreover, it can be stated and even motivated from the 
synthetic point of view. In order to understand this motivation, let us recall that a 
smooth mapping f: R ” +R” is called stable if there exists an open neighborhood w/ 
of f (in the Whitney P-topology) such that for any ge P(Rn) RP), if g E WJ then 
g 5 f. This says, precisely, that the orbit of f under the action of the group 
G = Diff(R”) x Diff(RP), where the action is given by (g, h) l f = h 0 f 08-l for 
(g, h) E G, is open in the Whitney Y-topology. It would therefore be enough to have 
the map 

given by yf(g, k) = h 0 fog-‘, a local homeomorphism at (1 E%?l, lRr), If we had a 
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notion of derivative for maps between function spaces, as well as an appropriate 
version of the Inverse Function theorem in this generality, a sufficient condition 
would then be th,at ‘(dyf)(lRn,IRPJ’ be surjective, i.e., that ~1 be a ‘submersion’ 
at (1 Rn, 1 Rp). The first requirement is no problem in our context, or for that matter 
in the context of Frechet manifolds (cf. (51, III. 81); it is the lack of an Inverse 
Function theorem in both cases which causes Mather’s theorem to be non-trivial. 
However, just as with Frechet manifolds, the above considerations lead us too, in 
the synthetic approach, to the definition of infinitesimal stability. Let us now justify 
this remark. 

Let f E RpRn . We can form Tf(RpRn) = [(RpRn)D]~, and call this the object of vector 
fields along f. For 1Rn~ RnRn, it is easy to see that SE TIRm(RnR”) iff SE (RnR”)D and 
n(s) = 1 Rn, i.e., iff s is a vector field on Rn (in one of the various forms of the notion 
afforded by Cartesian closedness, (cf. [9], §1.8), namely, as infinitesimal deforma- 
tions of the identity map). 
Call f c RpRn infinitesimally stable if the following holds: 

VW e Vect( f) 3s E Vect(R”) gl E Vect(RP) (w = df 0s + t 0 f ). 

Consider next the group 

G = Units(RnRn) Y Units(RpRP) 

and let GARpRnbegiven by Yr(g,h)=hofog-! 
Because Rn is infinitesimally linear, so is RnRn as well as Units(RnR”) (cf. [9], Exer- 

cise 6.5). Hence, rlRn(Units(RnRn)) is an R-module. From (91, Corollary (8.2) 
follows that if s is a vector field on RnRrl then for every de D, s(d) is invertible with 
inverse s( -d). Therefore: 

7’IK,,(Units(R”‘q)) = 7iR,,(R”‘“) as R-modules. (5.3) 

Since (-)D preserves finite limits, we also have 

(5.4) 

The map yet defined above induces a map rf which restricts (since y,‘( 1 R/l, 1 RI’) = f) to 
the linear map 

called the derivative of y.r at (1 R!l, lK,& The following statement has therefore a 
meaning in the synthetic context although it does not have one in the usual theory of 
P-mappings. 

5.5. Proposition. For any f E Rp’“, f is infinitesimally stable if and only if yJ. is a 
submersion at (1 HrI, 1 &. 

Proof. Consider the following maps, induced by composition with f: 
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af = (RnRn)D-----+ (f Rn)D (~ptt”)D, 

a/ is ‘composition with df on the left’. Similarly, 

(RdlD 
Ipr = (RpRp)D - (RPR”)D, 

PO 
j& = (RPD)R’ ---f=!-, (RPD)R”; 

6 is ‘composition with f on the right’. One uses FJ and pf when regarding vector 
fields as sections of the projection of the tangent bundle, which is the usual 
definition of vector field. The restrictions below are well defined and linear; we 
denote them by the same letters. 

faf )IRn 
T~p(RnRn~------’ T/(R pRn); 

@,-h/p 
1; p(RpRP)- Tf(R pRn). 

From the linear isomorphism of (5.3) one derives a new map ($)lRn obtained from 
(#tRn aS fOllOWS: if SE Tlp(RnRn) = &,,(vnitS(RnRn)) let (dj)&) = ((r/)&-‘)e 

‘We claim that the statement we wish to prove will fo!low from 

where proj l, projz are the projections associated with the product in (5.4). For, ye is 
a submersion at (1 RR9 ~RP) if and only if (@f)(lRn,lRp) is locally surjective, and on the 

other hand (&) 1 Rn 0 proj 1 + (pj-) 1 Rp * proj2 is surjective if and only if f is infinitesi- 
mally linear by definition. Let us then establish (*). Given w E Tj(RPR’), s E T,,,(RnR”) 
and TV TIRp(RpRP) and dED, one writes (cf. [9], $1.7) 

w(d)=df *s-‘(d)+t(d)*f 

whenever there exists a unique 

I: D(2)+ RpRn 

such that I(d,O)=df*s-l(d) and /(O,d)=t(d)*f letting then w(d)=I(d,d). It is 
clear that I(d,, d2) = t(d2) of* (s-‘(di)) has these properties so that w(d) = l(d, d) = 
t(d) *fob(d) = (t *j’* se l)(d) = dy#, t)(d). This finishes the proof. 0 

We close this section with some informal remarks about a possible notion of 
stability in this context. In order to define it, some version of the Whitney topology 
is needed. We propose a notion of open neighborhood of f E RPR in the style of 
Penon [ 11,121, leaving the investigation of its properties for a future occasion. 

For f E RpR”, and XE RR, j,“f, the jet of S at X, may be viewed as an element of 
some RS, where we have an ‘apartness’ notion #: invertibility. When we write 
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j,tf #O we intend it in this sense. 
Write f#@O to mean: 

and f #,g to mean: 

(f-8)%3* 

Notice that S(f #oo 0) is the infinitesimal version of the smallness n.lstion 
employed for polynomials in 4.7 and 5.1 of this paper. But such results neeri nlot 
be true in the infinitesimal versions. 

Qne needs then to introduce what one might call a Whitney-Penon neighborJlood 
off to mean any LGRpa” such that 

vge RPR” [g#oo f vge U]. 

A corresponding notion of stability would then read: 

where 

f is stable +Q b’gr RpRn [g#oD f vg-f], 

g -f *-‘& Jh E Units(R”R”) Jk E Units(RpRP) [k 0 f 0 h = g]. 

This definition applies to germs (as well as mappings) “from R” to RP”. 
In this context, Mather’s theorem ((51, Thm. 1.5) may be interpreted as saying 

that an Inverse Function theorem for mappings y between function spaces, would 

be true if restricted to the infinitesimally linear y (recall that the latter can be 

expressed, synthetically, by the condition “dy is surjective”). 

6. Unfoldings 

As mentioned in Section 5, the notion of stable mapping is important from the 

point of view of the theory of singularities, on account of the resulting simplifica- 

tion in the classification task. But another motivation for the study of stable maps 

comes from ideas of R. Thorn and his intended applications to the natural sciences 
(if. [lS], !3] among the sources quoted here). This point of view also led naturally to 

‘the zonsiderat ion of smooth r-parameter families of (potential) singularities, the 
rrr&Min~s of singularities. Which germs gave rise to stable unfoldings was partially 

answered by means of the notion of a finitely determined germ, which is easy to 
euprts$ synthetically: 

A germ @ E RI’ W’ is said to be k-determined if 

FWE RP ‘7t01” N.&w) =.&@)P(ly N @)I 

determined if k-determined for some k 20. (A weaker version of the 

ore appropriate if trying to work with this notion in this context.) 

and, the categorical point of view introduces an appreciable simpli- 
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fication when dealing with unfoldings. Let us restrict ourselves to germs @ : d(n)+? 

such that e(O) = 0, in 8. For each rr0, one has the topos R/d(r); the functor (5”a 
&‘/d(r) is given by: 

> 
, f-J=f xid, 

and is logical; so R maps to a having the same ‘properties’ as R. (cf. the remarks of 
Lawvere in [lo] on how to obtain and utilize new models of Synthetic Differential 
Geometry out of old models, the above method being one of those considered). 
Denote also by &‘/A(r) -% Q the functor given by 

Y-*A(r)w Y; f wf. 

By an r-unfolding of @ : A(n)+A in R’ we mean a map @: A(n)-+6 in E/A(r), 
satisfying: 

A(n) A 

C+j @ ‘, 
1 

I+r 
=I 

A(n+r)------+ 
a@ 

A(1 +r) 

commutes in 8’. 
By virtue of Cartesian closedness, we can easily establish the following: 

6.1. Proposition. The following constitute equivalent data for a given tp: A(n)+A 
in rf”: 

(i) and r-unfolding Q, of @; 
(ii) a map f: A(n-#-r)+A in 6 such that f IA(n) x to) = @ (usual definition of 

unfolding, cf. [ 181, Definition 3.1); 
(iii) a map7: A(r)+A*@) in A’ such that f’(0) = t$ (This is the point of view of a 

deformation of @.) 

6.2. Remark. Notice that, because of our definition, an unfolding of a germ in (5’ 
“of a map from R” to R” is itserf a germ (but in G/A(r)) “of a map from Rn to 8”. 
This means that all the definitions that we have given for germs, apply to unfoldings 
as well. It is also true that theorems about germs (if internally valid) remain true 
when interpreted as theorems about unfoldings of germs. This is, potentially, a 
powerful method, not exploited in this paper except for the following simplification 
of the ordinarily quite complicated notion of equivalence for unfoldings (cf. [3], p. 
121; [18], p. 55). 

Let @ : A(n)-+2 and Y: A(n)-+6 in n/A(r) be r-unfoldings (of @ : A(n)+A and 
ly : A(n)-+A). Say that @ and Y are equivaient r-unfoldings if there exist invertible 
germs ~‘1: A(n)-=+A(n) and /l:d-+d in d/A(r), such that Y=/~@w-~. If, further- 
more, Q!J = t,u, so that both 45 and Y are unfoldings of the same germ, @, then we can 



62 hi. Bstnge 

say that Q, and t,u are equivalent r-unfoldings of @ if @ and Y are equivalent 
unfoldings with CT and /?, and furthermore &z Id(nIx (0) and 8p Idtn) X io) are both the 
identity map. (A little bit of work is actually needed to show that this is the same 
notion as the usual one, but we leave it to the interested reader.) 

To see how natural the point of view of comma categories is when dealing with 
unfoldings, notice that a germ @ : d(n)-ul in B’, when regarded in &‘/d(r) via the 
functor 6 -L 6 /d(r), becomes an r-unfolding of @ and is that which is usually 
labelled the trivial r-unfolding of @I. 

Not always do unfoldings live in the same topos, yet they must be compared. This 
is done by means of the functors &/d(s) 3 K/LI(~) induced by composition with 
maps y : d(r)-+d(s) in 6 Thus, let Q, be an r-unfolding and Y an s-unfolding (not 
yet necessarily of the same germ) of germs d(n)-+d in 6. A map Q, + !P is a 3-triple -- 
(y,cr,Q) with ~:d(r)-+d(s), ar:d+y*6 and p: ;~*A(n)-+A(n), such that y*@= 
tr c Y 0 /?. I[f furthermore @ and Y both unfold & then require that a! and p above 
ss;tisfy 

4L 1 

NO, -A(n+r) 
Ul+r 

A-A(1 +r) 

\ 

I 

\ 

% and 

\I 

a, 
1(;+: 

\ “1+5 

A(n+s) A(1 +s) 

are commutatiiie in f’. (These diagrams express that cz and p are deformations of the 
identity.) 

We end with an elaboration of a remark made by Kock (cf. [8]) about Singularity 
theory. It is the finitely determined germs which are those for which stable unfold- 
ings exist. Now, the property of being k-determined for a germ at 0, however, is 
more a property of its k-jet at 0 than of the germ itself; indeed, being k-determined, 
the germ would ‘look like’ its jet under a suitable change of coordinates (equi- 
valence). Therefore, what this amounts to, is that it is the k-jets themselves that 
should be classified under equivalence and, since we are interested in singularities, 
the task of Singularity theory is then to classify, for each k,n, p, the equivalence 
classes of O-preserving maps Dk(n)-+Dk( p) under the relation of equivalence. This 
is, in fact the point of view which is usually taken when actually giving a classifica- 
tion in low dimensions (cf. [3], Chapter 15; or [ 181, §5). 
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